Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Med Genet A ; : e63559, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421105

RESUMEN

The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.

2.
Genet Med ; 26(2): 101012, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37924259

RESUMEN

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Estudios Prospectivos , Secuenciación del Exoma , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Pruebas Genéticas/métodos , Ontario
3.
Clin Case Rep ; 11(8): e7827, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37637203

RESUMEN

Non-immune hydrops is a prenatal finding which can occur due to an underlying genetic diagnosis such as common chromosomal aneuploidy (Trisomy 21, Turner syndrome etc.). It is extremely rare to have more than one genetic cause of hydrops fetalis in a single pregnancy. This report describes a dichorionic diamniotic pregnancy for a consanguineous couple where noninvasive prenatal testing was "high risk" for Trisomy 21. Family declined amniocentesis and opted for postnatal genetic testing. The pregnancy was later complicated with severe hydrops fetalis leading to demise for one of the twins, and a premature delivery of the other twin who had remarkable collodion not in keeping with Trisomy 21. Postnatal genetic investigations confirmed both Trisomy 21 and prenatal lethal Gaucher disease in the survivor twin. This case report highlights some of the prenatal diagnostic challenges for a consanguineous couple where a rare cause of fetal hydrops was concealed in a setting of a common chromosomal aneuploidy. The prompt postnatal diagnosis of perinatal lethal Gaucher disease, confirmed with undetectable glucocerebrosidase enzyme activity, assisted the family in the decision of providing palliative care for their infant who was quickly deteriorating. The importance of postnatal genetic evaluation and its impact on immediate patient management in an NICU setting is emphasized. This dual diagnosis was significant for the couple as it explained pervious pregnancy losses and has important future recurrence risk implications.

4.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757831

RESUMEN

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Asunto(s)
Distonía , Trastornos Distónicos , Malformaciones del Sistema Nervioso , Masculino , Humanos , Estudios Transversales , Mutación/genética , Fenotipo , Distonía/genética , Trastornos Distónicos/genética , Chaperonas Moleculares/genética
6.
J Obstet Gynaecol Can ; 44(7): 798-802, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35131504

RESUMEN

A 35-year-old woman was referred to genetics for 2 soft markers but was also found to have polyhydramnios. The couple were Old Order Mennonite, and carrier testing allowed for targeted investigation of syndromes associated with polyhydramnios in this population. Both parents were carriers of a 7304 bp deletion in the STRADA (LYK5) gene, causing an autosomal recessive syndrome of polyhydramnios, megalencephaly, and symptomatic epilepsy. This led to early recognition and treatment of neonatal seizures. Targeted testing can significantly shorten the diagnostic odyssey and decrease the cost of investigations, an especially important consideration for families who do not accept health insurance.


Asunto(s)
Epilepsia , Polihidramnios , Adulto , Canadá , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Humanos , Recién Nacido , Polihidramnios/diagnóstico , Polihidramnios/genética , Embarazo , Síndrome
8.
Mol Syndromol ; 12(3): 154-158, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34177431

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that displays a wide spectrum of clinical manifestations, often affecting multiple organs including the kidneys, brain, lungs, and skin. A pathogenic mutation in either the TSC1 or TSC2 gene can be detected in almost 85% of the cases, with mosaicism accounting for about half of the remaining cases. We report a case of TSC diagnosed clinically, requesting genetic counselling regarding reproductive risks. No mutation was identified on initial testing of peripheral blood; however, mosaicism for a likely pathogenic frameshift variant in TSC2 was detected at a level of 15% in renal angiomyolipoma tissue. Despite widespread clinical manifestations of TCS, this variant was not detected in skin fibroblasts or saliva, raising the possibility this is an isolated somatic mutation in renal tissue with the underlying germline mutation not yet identified. This case highlights the difficulties when counselling patients with mosaicism regarding their reproductive risks and prenatal diagnostic options.

10.
Genet Med ; 23(6): 1065-1074, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33547396

RESUMEN

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


Asunto(s)
Metilación de ADN , Epigenómica , Canadá , Europa (Continente) , Humanos , Síndrome
11.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498634

RESUMEN

A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders.


Asunto(s)
Metilación de ADN , Discapacidad Intelectual Ligada al Cromosoma X/genética , Adulto , Estudios de Casos y Controles , Niño , Proteínas de Unión al ADN/genética , Epigenoma , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/etiología , Persona de Mediana Edad , Modelos Genéticos , Trastornos del Neurodesarrollo/genética , Proteínas de Unión al ARN/genética
12.
J Hum Genet ; 66(5): 451-464, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33093641

RESUMEN

The adaptation of a broad genomic sequencing approach in the clinical setting has been accompanied by considerations regarding the clinical utility, technical performance, and diagnostic yield compared to targeted genetic approaches. We have developed MedExome, an integrated framework for sequencing, variant calling (SNVs, Indels, and CNVs), and clinical assessment of ~4600 medically relevant genes. We compared the technical performance of MedExome with the whole-exome and targeted gene-panel sequencing, assessed the reasons for discordance, and evaluated the added clinical yield of MedExome in a cohort of unresolved subjects suspected of genetic disease. Our analysis showed that despite a higher average read depth in panels (3058 vs. 855), MedExome yielded full coverage of the enriched regions (>20X) and 99% variant concordance rate with panels. The discordance rate was associated with low-complexity regions, high-GC content, and low allele fractions, observed in both platforms. MedExome yielded full sensitivity in detecting clinically actionable variants, and the assessment of 138 patients with suspected genetic conditions resulted in 76 clinical reports (31 full [22.1%], 3 partial, and 42 uncertain/possible molecular diagnoses). MedExome sequencing has comparable performance in variant detection to gene panels. Added diagnostic yield justifies expanded implementation of broad genomic approaches in unresolved patients; however, cost-benefit and health systems impact warrants assessment.


Asunto(s)
Secuenciación del Exoma/métodos , Enfermedades Genéticas Congénitas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Diagnóstico Molecular/métodos , Alelos , Composición de Base , Consanguinidad , Variaciones en el Número de Copia de ADN , Exoma , Biblioteca de Genes , Variación Genética , Homocigoto , Humanos , Mutación INDEL , Ontario , Mutación Puntual , Alineación de Secuencia , Flujo de Trabajo
13.
Am J Med Genet A ; 182(10): 2284-2290, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33043632

RESUMEN

Autosomal recessively inherited pathogenic variants in genes associated with the renin-angiotensin-aldosterone system (RAAS) result in early onset oligohydramnios and clinical features of the Potter sequence, typically in association with proximal renal tubules dysgenesis. We describe two siblings and a first cousin who had severe oligohydramnios in the second trimester, and presented at birth with loose skin, wide fontanelles and sutures, and pulmonary insufficiency. Two had refractory hypotension during their brief lives and one received palliative care after birth. All were found to have a homozygous nonsense variant, REN: c.891delG; p.Tyr287*, on exome sequencing. Autopsy limited to the genitourinary system in two of the children revealed normal renal tubular histology in both. Immunoblotting confirmed diminished expression of renin within cultured skin fibroblasts. To our knowledge, this is the first identification of an association between biallelic variants in REN and oligohydramnios in the absence of renal tubular dysgenesis. Due to its role in the RAAS, it has previously been proposed that the decreased expression of REN results in hypotension, ischemia, and decreased urine production. We suggest sequencing of genes in the RAAS, including REN, should be considered in cases of severe early onset oligohydramnios, even when renal morphology and histology are normal.


Asunto(s)
Síndrome de Fanconi/genética , Predisposición Genética a la Enfermedad , Oligohidramnios/genética , Sistema Renina-Angiotensina/genética , Renina/genética , Adulto , Amish/genética , Niño , Síndrome de Fanconi/patología , Femenino , Estudios de Asociación Genética , Homocigoto , Humanos , Hipotensión/genética , Hipotensión/patología , Riñón/patología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Masculino , Mutación/genética , Oligohidramnios/patología , Embarazo , Secuenciación del Exoma
14.
BMC Pediatr ; 20(1): 311, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32590952

RESUMEN

BACKGROUND: Bartter syndrome subtypes are a group of rare renal tubular diseases characterized by impaired salt reabsorption in the tubule, specifically the thick ascending limb of Henle's loop. Clinically, they are characterized by the association of hypokalemic metabolic alkalosis, hypercalciuria, nephrocalcinosis, increased levels of plasma renin and aldosterone, low blood pressure and vascular resistance to angiotensin II. Bartter syndrome type II is caused by mutations in the renal outer medullary potassium channel (ROMK) gene (KCNJ1), can present in the newborn period and typically requires lifelong therapy. CASE PRESENTATION: We describe a case of a prematurely born female infant presenting with antenatal polyhydramnios, and postnatal dehydration and hyponatremia. After 7 weeks of sodium supplementation, the patient demonstrated complete resolution of her hyponatremia and developed only transient metabolic alkalosis at 2 months of age but continues to be polyuric and exhibits hypercalciuria, without development of nephrocalcinosis. She was found to have two pathogenic variants in the KCNJ1 gene: a frameshift deletion, p.Glu334Glyfs*35 and a missense variant, p. Pro110Leu. While many features of classic ROMK mutations have resolved, the child does have Bartter syndrome type II and needs prolonged pediatric nephrology follow-up. CONCLUSION: Transient neonatal hyponatremia warrants a multi-system workup and genetic variants of KCNJ1 should be considered.


Asunto(s)
Síndrome de Bartter , Hiponatremia , Nefrocalcinosis , Canales de Potasio de Rectificación Interna , Síndrome de Bartter/complicaciones , Síndrome de Bartter/diagnóstico , Síndrome de Bartter/genética , Niño , Femenino , Humanos , Hiponatremia/diagnóstico , Hiponatremia/etiología , Lactante , Recién Nacido , Mutación , Canales de Potasio de Rectificación Interna/genética , Embarazo
15.
Am J Hum Genet ; 106(3): 356-370, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32109418

RESUMEN

Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios de Cohortes , Heterogeneidad Genética , Humanos , Síndrome
16.
Clin Epigenetics ; 12(1): 7, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31910894

RESUMEN

BACKGROUND: We previously associated HIST1H1E mutations causing Rahman syndrome with a specific genome-wide methylation pattern. RESULTS: Methylome analysis from peripheral blood samples of six affected subjects led us to identify a specific hypomethylated profile. This "episignature" was enriched for genes involved in neuronal system development and function. A computational classifier yielded full sensitivity and specificity in detecting subjects with Rahman syndrome. Applying this model to a cohort of undiagnosed probands allowed us to reach diagnosis in one subject. CONCLUSIONS: We demonstrate an epigenetic signature in subjects with Rahman syndrome that can be used to reach molecular diagnosis.


Asunto(s)
Metilación de ADN , Discapacidades del Desarrollo/genética , Mutación del Sistema de Lectura , Histonas/genética , Discapacidad Intelectual/genética , Encéfalo/metabolismo , Discapacidades del Desarrollo/metabolismo , Epigénesis Genética , Humanos , Discapacidad Intelectual/metabolismo , Neuronas/metabolismo , Transducción de Señal/genética , Síndrome
17.
Am J Hum Genet ; 104(4): 685-700, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929737

RESUMEN

Conventional genetic testing of individuals with neurodevelopmental presentations and congenital anomalies (ND/CAs), i.e., the analysis of sequence and copy number variants, leaves a substantial proportion of them unexplained. Some of these cases have been shown to result from DNA methylation defects at a single locus (epi-variants), while others can exhibit syndrome-specific DNA methylation changes across multiple loci (epi-signatures). Here, we investigate the clinical diagnostic utility of genome-wide DNA methylation analysis of peripheral blood in unresolved ND/CAs. We generate a computational model enabling concurrent detection of 14 syndromes using DNA methylation data with full accuracy. We demonstrate the ability of this model in resolving 67 individuals with uncertain clinical diagnoses, some of whom had variants of unknown clinical significance (VUS) in the related genes. We show that the provisional diagnoses can be ruled out in many of the case subjects, some of whom are shown by our model to have other diseases initially not considered. By applying this model to a cohort of 965 ND/CA-affected subjects without a previous diagnostic assumption and a separate assessment of rare epi-variants in this cohort, we identify 15 case subjects with syndromic Mendelian disorders, 12 case subjects with imprinting and trinucleotide repeat expansion disorders, as well as 106 case subjects with rare epi-variants, a portion of which involved genes clinically or functionally linked to the subjects' phenotypes. This study demonstrates that genomic DNA methylation analysis can facilitate the molecular diagnosis of unresolved clinical cases and highlights the potential value of epigenomic testing in the routine clinical assessment of ND/CAs.


Asunto(s)
Anomalías Congénitas/genética , Metilación de ADN , Enfermedades Genéticas Congénitas/diagnóstico , Estudio de Asociación del Genoma Completo , Estudios de Cohortes , Simulación por Computador , Anomalías Congénitas/diagnóstico , Variaciones en el Número de Copia de ADN , Epigenómica , Dosificación de Gen , Enfermedades Genéticas Congénitas/genética , Variación Genética , Impresión Genómica , Humanos , Fenotipo , Análisis de Secuencia de ADN , Síndrome , Expansión de Repetición de Trinucleótido
18.
Am J Med Genet A ; 179(3): 386-396, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30652412

RESUMEN

The ryanodine receptor 1 (RYR1) is a calcium release channel essential for excitation-contraction coupling in the sarcoplasmic reticulum of skeletal muscles. Dominant variants in the RYR1 have been well associated with the known pharmacogenetic ryanodinopathy and malignant hyperthermia. With the era of next-generation gene sequencing and growing number of causative variants, the spectrum of ryanodinopathies has been evolving with dominant and recessive variants presenting with RYR1-related congenital myopathies such as central core disease, minicore myopathy with external ophthalmoplegia, core-rod myopathy, and congenital neuromuscular disease. Lately, the spectrum was broadened to include fetal manifestations, causing a rare recessive and lethal form of fetal akinesia deformation sequence syndrome (FADS)/arthrogryposis multiplex congenita (AMC) and lethal multiple pterygium syndrome. Here we broaden the spectrum of clinical manifestations associated with homozygous/compound heterozygous RYR1 gene variants to include a wide range of manifestations from FADS through neonatal hypotonia to a 35-year-old male with AMC and PhD degree. We report five unrelated families in which three presented with FADS. One of these families was consanguineous and had three affected fetuses with FADS, one patient with neonatal hypotonia who is alive, and one individual with AMC who is 35 years old with normal intellectual development and uses a wheelchair. Muscle biopsies on these cases demonstrated a variety of histopathological abnormalities, which did not assist with the diagnostic process. Neither the affected living individuals nor the parents who are obligate heterozygotes had history of malignant hyperthermia.


Asunto(s)
Variación Genética , Heterocigoto , Homocigoto , Canal Liberador de Calcio Receptor de Rianodina/genética , Adulto , Biopsia , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Masculino , Linaje , Fenotipo , Estudios Retrospectivos , Ultrasonografía , Secuenciación del Exoma , Adulto Joven
19.
Nat Commun ; 9(1): 4885, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459321

RESUMEN

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening.


Asunto(s)
Anomalías Múltiples/genética , Proteínas Cromosómicas no Histona/genética , Metilación de ADN , Factores de Transcripción/genética , Anomalías Múltiples/diagnóstico , Ensamble y Desensamble de Cromatina , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , Epigenómica , Cara/anomalías , Facies , Deformidades Congénitas del Pie/diagnóstico , Deformidades Congénitas del Pie/genética , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Humanos , Hipotricosis/diagnóstico , Hipotricosis/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Micrognatismo/diagnóstico , Micrognatismo/genética , Mutación , Cuello/anomalías , Proteínas Nucleares/genética , Proteína SMARCB1/genética , Síndrome
20.
J Med Genet ; 55(2): 104-113, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097605

RESUMEN

BACKGROUND: De novo mutations in PURA have recently been described to cause PURA syndrome, a neurodevelopmental disorder characterised by severe intellectual disability (ID), epilepsy, feeding difficulties and neonatal hypotonia. OBJECTIVES: To delineate the clinical spectrum of PURA syndrome and study genotype-phenotype correlations. METHODS: Diagnostic or research-based exome or Sanger sequencing was performed in individuals with ID. We systematically collected clinical and mutation data on newly ascertained PURA syndrome individuals, evaluated data of previously reported individuals and performed a computational analysis of photographs. We classified mutations based on predicted effect using 3D in silico models of crystal structures of Drosophila-derived Pur-alpha homologues. Finally, we explored genotype-phenotype correlations by analysis of both recurrent mutations as well as mutation classes. RESULTS: We report mutations in PURA (purine-rich element binding protein A) in 32 individuals, the largest cohort described so far. Evaluation of clinical data, including 22 previously published cases, revealed that all have moderate to severe ID and neonatal-onset symptoms, including hypotonia (96%), respiratory problems (57%), feeding difficulties (77%), exaggerated startle response (44%), hypersomnolence (66%) and hypothermia (35%). Epilepsy (54%) and gastrointestinal (69%), ophthalmological (51%) and endocrine problems (42%) were observed frequently. Computational analysis of facial photographs showed subtle facial dysmorphism. No strong genotype-phenotype correlation was identified by subgrouping mutations into functional classes. CONCLUSION: We delineate the clinical spectrum of PURA syndrome with the identification of 32 additional individuals. The identification of one individual through targeted Sanger sequencing points towards the clinical recognisability of the syndrome. Genotype-phenotype analysis showed no significant correlation between mutation classes and disease severity.


Asunto(s)
Proteínas de Unión al ADN/genética , Cara/anomalías , Discapacidad Intelectual/genética , Mutación , Factores de Transcripción/genética , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Anomalías del Ojo/genética , Femenino , Estudios de Asociación Genética , Humanos , Recién Nacido , Hipotonía Muscular/etiología , Hipotonía Muscular/genética , Embarazo , Homología Estructural de Proteína , Síndrome , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...